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while the sensing channel operates at 0.633 um.
The value of the normalized frequency at 0.633 um
is more than 2.405 so that a few higher-orger
modes can propagate st this wavelength in the
core region.

Our experimental setup is schematically illus-
trated in Fig. 1. The beams trom poth tha He-Ne
laser and the semiconductor laser (central wave-
length: 1307 nm) are injected into a 1.84«km long
single-mode (at 1.3-um) optical fiber through a
single-mode power combiner. At the output end,
the laser beams are spectrally separated by the
1.3-4m/0.633-um WDM coupler. The light cou-
pied out from the 1.3-um channet is detected by an
InGaAs detector and serves as the communication
channef of the systemn. The light coupled out from
the 0.633-um channel is allowed 1o diverge into a
speckle pattern in which a smatk-area Si-PIN pho-
todetector is used 1o detect intensity fluctuations.
This forms the sensing channel of the system.

Figure 2 (Fig. 3) shows simultaneously the com-
munication signal and the sensing signal when the
optical fiber is unperturbed (perirbed). The dis-
turbance comes from a 2.77-kHz sound wave driv-
ing a spaaker which slightly vibrates a colled sec-
tion about a 40-cm length of optical fiber. These
figures demonstrate that the system is capable of
sensing a disturbance, and. as can be sean, there
is no distortion in the communication signal when
the sensing signal exits. We have systematically
studied the influence of fiber disturbance on com-
munication quality by changing the frequency of
the sound wave below, at, and above the modula-
tion frequency of the communication signat.
These experimental results reveal that our system
can simultaneously function as & communicator
and sensor and that no deterioration of the commu-
nication signal occurs.

Potential uses are also discussed.

(Poster paper)
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THM45 Interferometric  dispersion measure-
ments on small guided-wave siructures
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Recent correlation—refiactometry techniques
have demonstrated that loss in seria! microoptic
systems can be tracked with & spatial resolution of
the order of & few micrometers.'? We show here
that the dispersion properties of individual compo-
nents in these can also be ed from
their reflection signatures. The method is based
on Fourler transtormation of the interferograms, as
discussed by Bomberger and Burke.® Yo iliustrate
the technique, we measured the dispersion in a 23-
mm sample of single-mode fiber in the scanning
Michaelson interferometer of Fig. 1. The time-
domain sweep is done with a PZT and cat's-eye
reflactor and yiekls the signatures shown in Fig. 2.
For the case of negligible transmission loss and
balanced control arms, the transform of the cross-
corralation interferogram gives a modutus that rep-
resents the sowrce frequency spectrum end an
argumen representing the phase of the frequency
components. The phase function can be expand-
od about the trequency at peak intensity as
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With a suitable choice of origin in the time domain,
the second term in the expansion is zero. The
third- and higher-order terms contain the disper-
sion information. The first-order dispersion in a
transmission path x; is
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Results for our test lightguide are illustrated in Fig.
3. The phase with no sample in the reference arm
is negligible in this case. A 1024-point FFT and
Eq. (2) produce the values of D= 19 + 1 ps/km
nm. The uncenainties quoted here are one-sigma
values of the precision for repeated measurements
and indicate the leve! of system noise. The siope
of the dispersion can be estimated from the thirg-
order derivative of &{(r) and has a magnitude of
0.13 & 0.16 ps/km nm2,

The presence of firsi-order dispersion implies a
chirp in the time-domain signature. This effect
can be observed in the experimentat data,

The value of D obtained by Fourier transforma.
tion may be compared to the estimate derived from
the broadening of the envelope of the interfero-
gram. From the resulls of Shibata and co-work-
ers® we can infer that for constant D and a Gauss-
ian spectrum (only approximately true here), the
envelope of the cross-correlation interferogram is
also Gaussian and broadens according to the
square root of the sum-of-squares rule that is usu-
ally associated with optical pulses. From this
analysis D is ~15 ps/km nm. Dispersion values

btained from Fourier lysis of the sig e are,
potentially at least, the more accurate of the two
estimates.

While the transform method has some limita-
tions when compared to the more conventional
time-delay interferometric approach useg for fi-
bers,® it s attractive for the signature analysis of
cascaded oplical elements using coherence-do-
main refiectometry. (Poster paper)
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THM4¢ Continuous-wave tunable and O-
switched operation at 938 nm of a diode-laser-
pumped Nd**-doped fiber laser
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PAYNE, U. Southampton, Dept. Elsctronics &
Computer Science, Optical Fibre Group, South-
ampton, SO8 5NH, UK.

Fiber lasers have been shown to offer a number
of advantages over conventional crystal lasers op-
erating in tha near-iR region. The smal! mode size
in the single-mode fiber enablas high pump Intensi-
ties to be relatively easily achieved without associ-
ated therma! problems. In addition, cw GaAlAs
diode lasers have provided convenient pump
sources for fiber lasers, and efficient operation at

1.08 {Ref. 11and 1.55 um (Ret. 2) has been Semon.
strated.

Room-temperature cw oscillation on the ‘F”.
4k, ransition has been reported previously using g
Nd>*-doped single-mode fiber iaser Pumped by
either a cw rhodamine 6G dye laser® or diode
laser. 4 Also, miniature Nd:YAG lasers Operating
at 846 nm have been demonstrated, pumped by
rhodamine BG dye laser or @ GaAlAs diode laser.t
Here we repon O-switched and tunable operation
of a diode laser-pumped Nd**-doped single-moge
fiber faser operating on the three-leve! 'Faxz-‘lm
transition at 938 nm,

The experimental configuration of this laser hag
been described previously.! A SharpLT015 GaAk
AS laser diode operating at 823 nm was employed
as the pump source. The fiber was characterizeg
by a Nd** ion concentration of 1200 ppm. a core
diameter of 3.4 um, and a cutoH! wavelength o 920
nm. The equivalent step-index N.A. of the fiber
was 0.21. The input mirror was chosen to have a
high transmission (T = 85%) at the PUMD wave-
length and high reflectivity (R > 99%) at 93§ am,
the lasing wavelength. To suppress the buildup of
amplified spontaneity at 1.09 um the input mirror
reflectivity was low (R = 3%} at this waveiength.
The output mirror had a retiectivity of 57% at 938
namand 40% at 1.09 um. No attempt was made 10
optimize the output coupling.

The cw lasing characteristic obtained is shown
inFig. 1. The slope efficiency was 37% with a
maximum output power of 3 mW and a laser
threshold of 1.9-mW absorbed pump power, To
avold unwanted residual absorption of the three-
leve! 938-nm emission it was necessary 10 deter-
mine the optimum fiber length. Additionally, if the
{iber length was too short, output power was due to
Insutficient absorption of the pump light. Maxi-
mum oulput power and slope efficiency were ob-
tained for a tiber length of 160 cm {Fig. 2).

Tunable operation was achieved by introducing
an infracavity objactive and replacing the output
mirror with a bulk diffraction grating. The grating
had 600 lines mm™! and was blazed at 1 pum.
Rotation of the grating enabled tuning of the laser
tobe achieved. An intracavity peflicle was insert-
e0 1o couple out the output. The threshold for
laser action in this contiguration was 6.5 mwW ab-
sorbed. At an absorbed pump power of 15 mW a
tuning range of 40 nm was achieved, as shown in
Fig. 3. The maximum output power a1 936 nm was
0.2 mw.

Q-switching of this device has also been
achieved by inserting an acoustooptic modulator
into the cavity. Peak puise power obtained to date
has been limited to ~1 W by the cavity configura-
tion used. However, it is anticipated that powers
in excess of 10 W will be readily achievable by
simple modification of the cavity.
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THM45  Fig. 1. Block diagram of the scanning
nterferometer.  The LED emission spectrum is
centered at 1550 nm and has a FWHM of 140 nm.
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